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Abstract—Subjective Logic (SL) is one of well-known belief
models that can explicitly deal with uncertain opinions and infer
unknown opinions based on a rich set of operators of fusing
multiple opinions. Due to high simplicity and applicability, SL
has been popularly applied in a variety of decision making in
the area of cybersecurity, opinion models, and/or trust or social
network analysis. However, SL has an issue of scalability to
deal with a large-scale network data. In addition, SL has shown
a bounded prediction accuracy due to its inherent parametric
nature by treating heterogeneous data and network structure
homogeneously based on the assumption of a Bayesian network.
In this work, we take one step further to deal with uncertain
opinions for unknown opinion inference. We propose a deep
learning (DL)-based opinion inference model while node-level
opinions are still formalized based on SL. The proposed DL-based
opinion inference model handles node-level opinions explicitly in
a large-scale network using graph convoluational network (GCN)
and variational autoencoder (VAE) techniques. We adopted the
GCN and VAE due to their powerful learning capabilities in
dealing with a large-scale network data without parametric fusion
operators and/or Bayesian network assumption. This work is
the first that leverages the merits of both DL (i.e., GCN and
VAE) and a belief model (i.e., SL) where each node level opinion
is modeled by the formalism of SL while GCN and VAE are
used to achieve non-parametric learning with low complexity.
By mapping the node-level opinions modeled by the GCN to
their equivalent Beta PDFs (probability density functions), we
develop a network-driven VAE to maximize prediction accuracy
of unknown opinions while significantly reducing algorithmic
complexity. We validate our proposed DL-based algorithm using
real-world datasets via extensive simulation experiments for
comparative performance analysis.

I. INTRODUCTION

In the decision making domain, including the fields of

evidence and belief theories, reasoning or managing uncer-

tainty has been studied since 1960s. The examples include

Fuzzy Logic, DST, Transferable Belief Model (TBM), and

Dezert-Smarandache Theory (DSmT). Most of them deal with

uncertainty implicitly [6]. In 1990’s, as a variant of DST,

Subjective Logic (SL) [14] is proposed to explicitly deal

with the dimension of uncertainty in subjective opinions. SL

defines a binomial opinion (e.g., pro vs. con or agree vs.

disagree) with three dimensions, including belief, disbelief,

and uncertainty. SL provides a set of various operators to fuse

* This work is done when Jin-Hee Cho was with US Army Research
Laboratory.

multiple, different opinions that allow deriving structural rela-

tions between opinions (i.e., random variables) in a network.

Although SL has offered a rich set of operators that allow

us to fuse multiple opinions, its inherent parametric way of

combining opinions has been shown as a hurdle to limit its

scalability and led to a bounded prediction accuracy in deriving

unknown opinions. To handle these issues, the variants of SL

have been proposed to resolve the issue of scalability in SL,

such as subjective networks based on Bayesian networks [13]

and collective subjective logic based on Markov Random

Fields (MRFs) [6]. However, due to the inherent parametric

opinion derivation (e.g., fusion operators) and the distribution

assumption (e.g., Bayesian networks), we have observed the

bounded performance of SL and its variants [6, 13].

In this paper, we propose a deep learning (DL)-based

opinion inference model that addresses the key challenges

of high scalability and handling heterogeneous opinions (i.e.,

node-level opinions) in large-scale network data. We adopt two

state-of-the-art techniques called the graphical convolutional
network (GCN) and variational autoencoder (VAE). In this

work, a node-level opinion is formulated as SL-based binomial

opinion, consisting of belief, disbelief, and uncertainty masses

where the sum of three values is 1. Based on this node-

level opinion formulation, we develop a GCN to directly

consider heterogeneous structural dependencies between node-

level opinions which include beliefs and uncertainties in

a given network data. And then, we map their combined

forms (opinions) to their equivalent Beta PDFs and develop

a network-driven VAE that provides powerful learning capa-

bility to achieve highly accurate opinion predictions with low

complexity. We summarize the key contributions made in this

work:

1) This work is the first that combines non-parametric deep

learning (DL) algorithm with an opinion formalism of

SL in order to achieve powerful learning without being

tied to parametric fusion operators in SL while keeping

the explicit consideration of the uncertainty dimension

in a subjective opinion. In particular, this work does not

assume that observations (i.e., evidence) are available to

derive an SL-based opinion based on the mapping rule

with Beta distribution; instead, given a set of known

‘subjective opinions’ in SL, which is a second order
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probability, unknown opinions can be inferred by using

the proposed DL-based inference method.

2) This work is the first that proposes a DL-based opinion in-

ference algorithm dealing with uncertain opinions charac-

terized by a set of heterogeneous belief and uncertainty in

a large-scale network data. In particular, we adopted the

DL techniques called the GCN and VAE which provide

a powerful capability to obtain non-parametric learning

with low complexity and high prediction accuracy. To

be specific, the GCN can model heterogeneous structural

dependencies among node-level beliefs and uncertainties

in a given network data while the proposed network-

driven VAE can model the inherent dependencies between

beliefs and uncertainties based on the mapping of their

SL-based opinions to equivalent PDFs for high opinion

prediction with low complexity.

3) The proposed DL-based opinion inference algorithm is

validated through extensive experiments using real-world

datasets. We conducted comparative performance analysis

by comparing the performance of the proposed DL-based

algorithms with those of the original SL and the state-

of-the-art counterpart (i.e., collective subjective logic, or

CSL [6]). The implementation of our proposed methods

and the testeddata sets are available at github1.

The rest of this paper is organized as follows. Section

II provides the overview of related work in the area of

probabilistic models, belief models, and DL-based inference

models. Section III gives the overview of SL and GCN

as the basis of the proposed DL-based opinion inference

model. Section IV shows an example scenario and addresses

a problem statement. Section V describes the proposed DL-

based opinion inference model. Section VI demonstrates the

experimental results and discusses their overall trends and

interpretation. Finally, Section VII concludes this work and

suggests the future work directions.

II. RELATED WORK

A. Probabilistic Models

Extensive efforts have been made to model uncertainty

caused by a lack of information or knowledge in network data

as a joint probability distribution over a set of variables, in

which each variable relates a node in the network. Two typical

probabilistic models include MRFs [4] and Gaussian Processes

(GPs) [18]. The former models the joint distribution based

on potential functions of the cliques to capture the relational

structure. The latter models the joint distribution using a

multivariate Gaussian distribution and uses the covariance

matrix to characterize the structural relations between the

variables in the network.

Probabilistic models have shown limited capabilities in

considering uncertainty caused by ignorance (i.e., a lack of

evidence about the truth of states) and other causes, such

as vagueness (i.e., failing in discerning a single state) and

1https://github.com/zxj32/GCN-VAE-opinion

ambiguity (i.e., failing in observing consensus due to con-

flicting evidence). For example, if somebody wants to express

ignorance about the state x as “I don’t know,” this would

be impossible with a simple probability value. A probability

P (x) = 0.5 would mean that x and x̄ are equally likely, which

is quite informative in deed, unlike ignorance.

B. Belief Models

Belief models were designed to manage uncertainty intro-

duced by various root causes, such as ignorance, vagueness,

and ambiguity, during the process of decision making. Well-

known belief models include Fuzzy Logic, DST, TBM, SL,

and DSmT. However, they have not explicitly addressed the

dimension of uncertainty in subjective opinions [6].

SL has been proposed to define an opinion that explicitly

deals with uncertainty. In addition, SL offers a variety of

operators to fuse multiple opinions [14]. New extensions of

SL have been proposed to make SL scalable to large-scale

networks, such as subjective Bayesian networks [13] and

collective subjective logic, as a hybrid approach, by combining

SL, probabilistic soft logic, and MRFs [4, 6]. However, all

the preceding belief models are designed based on predefined

operators or distribution assumptions (e.g., Bayesian networks)

that may not effectively deal with heterogeneous uncertain

opinions in a given network data. In this work, we proposed

a DL-based opinion inference model based on GCN and VAE

which provides high prediction accuracy and low complexity

for opinion inference in a large-scale network data while

heterogeneous node-level opinions are formulated based SL.

C. DL-based Inference Models

In early days of machine learning (or deep learning), re-

cursive neural networks (RNNs) are used to deal with data

representations in directed acyclic graphs [8]; later, Graph

Neural Networks (GNNs) [9] are developed as a general-

ization of RNNs to process general directed and undirected

graphs. After then, convoluational neural networks (CNNs)

is developed to deal with data representations from a spatial

domain to a graph domain, which has received significant

attention. The methods developed in this direction are called

graph convoluational networks (GCNs) and fall into two main

categories: spectral approaches and non-spectral approaches.

GCNs have demonstrated the state-of-the-art performance in

a number of challenging mining tasks (e.g., semi-supervised

node classification and link prediction) [10, 15].

Spectral approaches for GCNs explore convolutions based

on a spectral representation of the graphs. Bruna et al. [5]

implemented the convolution operator as a spectral filter in the

Fourier domain by calculating the eigen-decomposition of the

graph Laplacian, which however is computationally expensive

and leads to non-spatially localized filters. Henaff et al. [12]

proposed a parameterization of the spectral filters to make

them spatially localized. Defferrard et al. [7] and Kipf and

Welling [15] introduced approximations of the filters based

on a Chebyshev expansion of the Graph Laplacian that do

not need eigen-decomposition of the graph Laplacian, scale
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linearly in the number of graph edges, and are concurrently

spatially localized. Non-spectral approaches for GCNs con-

duct convoluations directly on neighborhoods (i.e., groups of

spatially close neighbors) in the graph. As a graph is irregular

in general, the receptive fields required for convolutions are

irregular as well. Different strategies have been proposed to

deal with irregular receptive fields [10, 16, 22].

III. BACKGROUND

For this present work to be self-contained, here we provide

the overview of SL and GCN as the basis of the proposed

DL-based opinion inference model.

A. Subjective Logic (SL)

In SL, a binomial opinion is defined in terms of belief,

disbelief, and uncertainty towards a given proposition x. For

simplicity, we omit x in the following notations [14]. To

formally put, an opinion w is represented by:

w = (b, d, u, a) (1)

where b is belief (e.g., true), d is disbelief (e.g., false), and

u is uncertainty (i.e., ignorance or a lack of evidence). a
represents a base rate, a prior knowledge upon no commitment

(e.g., neither true nor false), where b + d + u = 1 for

(b, d, u, a) ∈ [0, 1]4. We denote an opinion by w, which can

be projected onto a single probability distribution by removing

the uncertainty mass.

A binomial opinion follows a Beta pdf (probability density

function), denoted by Beta(p|α, β), where α represents the

amount of positive evidence and β is the amount of nega-

tive evidence [14]. In SL, uncertainty u decreases as more

evidence, α and β, is received over time. An opinion w can

be obtained based on α and β as w = (α, β). This can be

translated to w = (b, d, u, a) using the mapping rule in SL.

SL offers an operator, ⊗, to discount trust when an entity

does not have any direct experience with another entity. That

is, transitive trust based on structural relations is used to derive

trust between two entities who have not interacted before.

Trust from i to j, denoted by wi
j = (bij , d

i
j , u

i
j , a

i
j), and trust

from j to k, wj
k = (bjk, d

j
k, u

j
k, a

j
k), are used to derive trust

from i to k, wi
k := (bik, d

i
k, u

i
k, a

i
k) = wi

j ⊗ wj
k. It is obtained

by:

bik = bij ⊗ bjk = bijb
j
k, d

i
k = dij ⊗ djk = bijd

j
k (2)

uik = uij ⊗ ujk = dij + uij + biju
j
k, a

i
k = aij ⊗ ajk = ajk.

SL also provides a consensus operator, ⊕, to find a consensus

between two opinions [14] where two entities observe a same

entity. An opinion after i exchanges opinions with k is given

by wi
k ⊕ wj

k, where:

bik ⊕ bjk =
biku

j
k + bjku

i
k

ζ
, dik ⊕ djk =

diku
j
k + djku

i
k

ζ
(3)

uik ⊕ ujk =
uiku

j
k

ζ
, aik ⊕ ajk = aik.

where ζ = uij + ujk − uiju
j
k > 0. When ζ = 0, wi

k ⊕ wj
k is

defined by:

bik ⊕ bjk =
ψbik + bjk
ψ + 1

, dik ⊕ djk =
ψdik + djk
ψ + 1

(4)

uik ⊕ ujk = 0, aik ⊕ ajk = ak.

where ψ = lim(uik/u
j
k). These discounting, ⊗, and consensus,

⊕, operators [14] are used to derive trust measures based on

the trust opinions of relationships. Due to space constraint,

we don’t show an example of using these operators. Interested

readers can be referred to [6].

In this work, we aim to derive a set of unknown opinions

x = {x1, · · · , xn} when a set of observed opinions y =
{y1, · · · , ym} is given where both opinions are represented

by a binomial opinion with four dimensions, as described in

Eq. (1) (i.e., wxi
for i = 1 · · ·n and wyj

for j = 1 · · ·m).

B. Graph Convolutional Networks (GCN)

This section introduces a state-of-the-art GCN model [15]

used in this work. Denote a graph by G = (V,E), where

V = {1, · · · , n} refers to the set of nodes and E ⊆ V×V refers

to the set of edges. Let A ∈ {0, 1}n×n be an adjacency matrix,

where Ai,j = 1 if (i, j) ∈ E and, otherwise, Ai,j = 0. The

(unnormalized) graph Laplacian matrix is an n×n symmetric

positive-semidefinite matrix L = D−A, where D is the degree

matrix and Di,i refers to the degree of node i and Di,i = 0
for i �= j.

The graph Laplacian has an eigen decomposition L =
ΦΛΦT , where Φ = (φ1, · · · ,φn) are the orthonormal eigen-

vectors and Λ = diag(λ1, · · · , λn) is the diagonal matrix

of corresponding eigenvalues. The eigenvalues serve as the

role of frequencies in classical harmonic analysis and the

eigenvectors are interpreted as Fourier atoms. Given a signal

r ∈ R
n (or a vector of feature values) on the nodes of graph G,

where ri refers to a feature value at node i, its graph Fourier

transform is given by r̂ = ΦT r. Given two signals r and b
on the graph, we can define their spectral convolution as the

element-wise product of their Fourier transformations,

r � b = ΦT (ΦT r) ◦ (ΦTb) = Φdiag(r̂1, · · · , r̂n)b̂, (5)

which is a property of the well-known Convolutional Theorem
in the Euclidean case.

As a graph is irregular with nodes having widely different

degrees, it is difficult to directly define a convolution on the

nodes. Instead, Bruna et al. [5] used the spectral definition of

convolution (see Eq. (5)) to generalize Convolutional Neural

Networks (CNNs) on graphs, which has a spectral convolu-

tional layer of the form as:

gθ � r = ΦgθΦ
T r. (6)

The filter gθ can be defined as a function of the eigenvalues

of L, i.e., g(Λ). Evaluation of Eq. (6) is computationally

expensive because multiplication with the eigenvector matrix

Φ is O(n2), in addition to the high computational cost in

computing the eigendecomposition of L in the first place. To
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address this problem, Hammond et al. [11] suggest that gθ(Λ)
can be well-approximated by a truncated expansion in terms

of Chebyshev polynomials Tk(r) up to K-th order:

gθ(Λ) ≈
K∑

k=1

θkTk(Λ̃), (7)

with a rescaled Λ̃ = 2Λ/λmax − In. λmax refers to the

largest eigenvalue of L. θ ∈ R
K is a vector of Chebyshev

coefficients. The Chebyshev polynomial can be recursively

defined as Tk(r) = 2xTk−1(r)−Tk−2(r), with T0(r) = 1 and

T1(r) = r. Applying the approximation based on Chebyshev

polynomials, a convolution of a signal x with a filter gθ now

has the approximated form:

gθ � r ≈
K∑

k=1

θkTk(L̃)r. (8)

By stacking multiple convolutional layers of the form of

Eq. (8) in which each layer is followed by a point-wise non-

linearity filter, we can therefore design a multi-layer convolu-

tional neural network model based on graph convolutions.

For example, a two-layer GCN model [15] for the task of

node classification on a network with a symmetric adjacency

matrix A (binary or weighted) can be formulated as:

p = g(r,A) = softmax (gW(1) � ReLU(gW(0) � r)) , (9)

where the output matrix p ∈ [0, 1]n×2 provides the predicted

probabilities of the binary classes of the n nodes. Here,

W (0) ∈ R
1×H is an input-to-hidden weight vector with H

feature maps. W (1) ∈ R
H×F is a hidden-to-output weight

matrix and F refers to the number of classes. The softmax

activation function, defined as softmax(ri) = 1
Z exp ri with

Z =
∑

i exp(ri), is applied row-wise. A nonlinear activity

function called as function Rectified Linear Unit (ReLU) is

defined as ReLU(ri) = max{0, ri} and is used to introduce

element-wise non-linearity.

IV. PROBLEM FORMULATION

In this section, we describe an example to motivate a

problem to solve in this work. We also show how to formulate

a given uncertainty-based opinion inference problem.

A. Example Scenario

In this work, we aim to infer unknown opinions, given a

set of known opinions, in terms of the applications in traffic

congestion prediction in a road network. Given a network,

defined as G = (V,E, y), where V = {1, 2, · · · , N} is the

set of vertices (i.e., intersections in the road network), E ⊆
V × V is the set of edges (i.e., road links), and yi refers to

a Boolean variable at node i ∈ V, in which state 0 indicates

‘non-congested’ while state 1 refers to ‘congested.’

Suppose that we are given the subjective opinions of the

congestion variables {yi}i∈L, ωL = [ωi]i∈L that are estimated

based on their historical observations. A subjective opinion

ωi is defined by a tuple of three components in Eq. (1):

ωi = (bi, di, ui). Given these information, we aim to predict

the beliefs about the states of the congestion variables at the

nodes without sensors (i.e., intersections without any camera),

denoted as ωV\L = [ωi]i∈V\L.

B. Problem Statement

We formulate the problem of uncertainty-based inference

by:

Problem 1 (Uncertainty-based opinion inference in network

data): Let us define the following notations:
• Let G = (V,E, y) be an input network as defined above.
• Let ωi = (bi, di, ui) be node i’s subjective opinion of

variable yi where node i ∈ V. Let L ⊆ V be a subset of
edges whose opinions are denoted by ωL = [ωi]i∈L.

Given
• G = (V,E, y), an input network;
• ωL = [ωi]ei∈L, a vector of subjective opinions on
{yi}i∈L.

Predict ωV\L = [ωi]i∈V\L., unknown opinions on {yi}i∈V\L
V. DL-BASED OPINION INFERENCE MODEL

In this section, we discuss the proposed DL-based opinion

inference model and the details on how GCN and VAE are

used to infer unknown opinions, given a set of known opinions.

Denote by B = [bi]i∈V the vector of the belief masses on

the nodes in V. Denote by U = [ui]i∈V the vector of the

uncertainty masses on the nodes in V. As shown in Figs. 1

and 2, our proposed approach consists of two design compo-

nents: (1) GCN-based modeling for heterogeneous structural
dependencies among node-level beliefs B and uncertainties

U; and (2) network-driven VAE to model inherent relational
dependencies between B and U based on mapping of opinions

to their equivalent PDFs.

A. GCN-based Opinion Model

Fig. 1. An overview of our proposed GCN-based opinion model.

As shown in Fig. 1, we propose a two-layer GCN for

modeling the node-level beliefs B and uncertainties U:

[B,U] = f(X,A; θ) (10)

=
[
sigmoid

(
[gW(1)

B
, gW(1)

B
] � ReLU(gW(0) � X)

) ]

where θ = {W(1)
B ,W(1)

U ,W(0)}, A is the adjacency matrix of

G, and X ∈ R
n×p is a predefined feature matrix.. If the input

network does not have node-level features, the feature matrix

X is set to an identity matrix I.
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Fig. 2. An overview of our proposed VAE-based opinion model.

Two main design-related questions will be answered here to

explain the principles of our proposed GCN model: (1) how
many conovluational layers could be sufficient and (2) how to
model the heterogeneous dependencies among B and U. For
the former question, this is in general considered as a hyper

parameter that requires tuning for different datasets. For GCN,

recent studies in several real-world datasets have demonstrated

that two convolution layers have less risk of overfitting than

more than two covoluation layers for GCN [15]. We hence

consider two convolutional layers in our proposed GCN-based

opinion model. For the latter question, we need to capture

two types of dependencies, including heterogeneous structural
dependencies among node-level beliefs B and uncertainties U
and inherent relational dependencies between B and U. The

first type of dependencies can be well modeled using the two

convolution layers in GCN. In particular, the first convolution

layer is a shared layer for B and U in order to model

higher order shared structural information for B and U. After

then, we designed two separate convolution layers with the

parameters W(1)
B and W(1)

U for B and U, respectively, in order

to capture their own heterogeneous structural dependencies in

the network.
The proposed GCN-based opinion model can be applied

alone to predict the unknown opinions {ωi}i∈V\L. The pa-

rameters θ of the model can be estimated by minimize the

following cross-entropy scores related to B and U based on

the observed node-level opinions {ωi}i∈L:

min
θ
LB(θ) + LU(θ), (11)

where

LB(θ) = −
∑
i∈L

[
bi log f1,i(X,A; θ) + (12)

(1− bi) log(1− f1,i(X,A; θ))
]

LU(θ) = −
∑
i∈L

[
ui log f2,i(X,A; θ) + (13)

(1− ui) log(1− f2,i(X,A; θ))
]

However, we observed that the designed convolution
layers in our proposed GCN-based opinion model are
incapable of effectively handling the second type of de-
pendencies (the inherent relational dependencies) between
B and U, associated with the domain knowledge of opinions
in SL. This motivates a VAE-based opinion model to be
developed to enhance our proposed GCN-based opinion
model with respect to accuracy prediction of unknown
opinions.

B. VAE-based Opinion Model
The key underlying idea is to transform the combinations

(opinions) of B and U to their equivalent Beta PDFs in order

to model their inherent relational dependencies. Based on this

transformation, a VAE-based opinion model can be naturally

developed.
As introduced in Section III-A, each opinion ωi =

(bi, di, ui) can be defined in the equivalent form of a Beta

PDF, Beta(αi, βi), where

αi = ri +W · a, βi = si +W (1− a), (14)

ri =W · bi/ui, si =W · di/ui,
and the parameters a and W are predefined. Denote by zi ∈
[0, 1]P a vector of latent probability variables for each node

i ∈ V that are sampled from the beta pdf:

zi,j ∼ Beta(αi, βi), j = 1, · · · , P.
Denote Z = (z1, · · · , zN ). As the probability values in Z
are sampled from node-level opinions, the graph structural

information encoded by node-level opinions can be well

captured by Z as well. We can then explore this important

pattern using the framework of VAE, in which Z is considered

the encoded latent variables. The encoder of VAE can be

defined as follows:

q(Z|X,A) =

N∏
i=1

P∏
j=1

Beta(zi,j |αi, βi), (15)

where the parameters αi and βi are calculated based on bi and

ui. A decoder then uses the latent variables Z to recover the

structural information in adjacency matrix A:

p(A|Z) =
N∏
i=1

∏
j=Ni

p(Ai,j |zi, zj), (16)

where p(Ai,j = 1|Z) = σ([ψ−1(zi)]
T [ψ−1(zj)]) and

p(Ai,j = 0|Z) = 1 − p(Ai,j = 1|Z), ψ−1(·) is the reverse

CDF (cumulative density function) of a standard Gaussian

distribution that converts a probability to a real value, and

σ(·) is the logistic sigmoid function, Ni is the neighbor of

node i. The resulting negative variational lower bound L or

loss function with respect to the parameters θ has the form:

L = −Eq(Z|X,A)

[
log p(A|Z)

]
+ KL

[
q(Z|X,A)‖p(Z)

]
(17)

where KL[q(·)‖p(·)] is the Kullback-Leibler divergence be-

tween q(·) and p(·). We take a prior of Beta distribution

p(Z) =
∏N

i=1

∏P
j=1 p(zi,j) =

∏N
i=1

∏P
j=1 Beta(zi,j |α0, β0),

where the parameters α0 and β0 are predefined.
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C. Inference Algorithm for Predicting Unknown Opinions

In this section, we will combine our proposed GCN-based

opinion model and VAE-based opinion model to allow effec-

tive and efficient prediction of unknown opinions. The key

underlying idea is to jointly optimize the loss functions of

these two model in order to estimate the parameters θ:

min
θ
λL(θ) + LB(θ) + LU(θ), (18)

where λ is a trade-off parameter. Note that the expectation

Eq(Z|X,A)[log p(A|Z)] in L does not have an analytic form and

the expectation can be approximated by taking a number of

sample {Z(n)}Kn=1, where Zn ∼ q(Z|X,A). We need to ensure

that each sample Z(n) is a function of θ, but the “reparameter-
ization trick” is not applicable to Beta distribution, as it does

not have the differentiable non-centered parametrization [17].

Instead, we use Kumaraswamy distribution to approximate

each beta distribution q(z|α, β) with the same parameters.

Kumaraswamy distribution with the parameters α and β has

the pdf function is given by:

q̃(z|α, β) = αβ(z)α−1(1− zα)β−1. (19)

We can then have the reparameterization as:

z ∼ (1− u1/β)1/α, (20)

where u ∼ Unif(0, 1). In order to generate the samples

{Z(n)}Kn=1, we first generate the samples {u(n)i,j }, where i =
1, · · · , N , j = 1, · · · , P , and n = 1, · · · ,K. Then the samples

can be obtained as:

{
z
(n)
i,j :=

(
1− (u

(n)
i,j )

1/βi

)1/αi }
. (21)

Problem (18) can then be approximated as:

min
θ
λL̃(θ) + LB(θ) + LU(θ), (22)

where

L̃(θ) = − 1

K

K∑
n=1

[
log p(A|Z(n))

]
+ KL

[
q(Z|X,A)‖p(Z)

]
. (23)

Our inference algorithm to predict unknown opinions based

on the hybrid approach combining the GCN-based opinion

model with the VAE-based opinion model can be designed

using the framework of back propagation. The key steps are

described in Algorithm 1. After initialization of the mini-

batch size K and the learning rate η, we first solve the

parameter estimation problem (11) of our GCN-based opinion

model to obtain initial setting of the parameters θ. Then

we iterate forward and backward passes until convergence

on the estimated parameters θ. The forward pass evaluates

the loss function (23) based on the samples {u(n)i,j } from

Unif(0, 1). The backward pass obtains the gradient of the

loss function (23) via the chain rule. The forward pass

takes O(KN) and the backward pass takes O(KM) due

to the approximations based on Chevyshev polynomials in

GCN [15], where N and M refer to the numbers of nodes and

Algorithm 1: GCN-AVE based Opinion Prediction

Input: G = (V,E,A, y) and {ωi}i∈L

Output: {ωi}i∈V\L
1 � = 1;
2 K = 16; (Set the mini-batch size)
3 η = 0.001; (Set the learning rate)

4 Estimate the initial θ(�) by solving Problem (11);
5 repeat
6 Sample {u(n)

i,j } ∼ Unif(0, 1), for i = 1, · · · , N ,
j = 1, · · · , P , and n = 1, · · · ,K;

7 Forward pass to compute B, U, then Calculate {Z(n)}Kn=1

via Eq. (21) ;
8 Backward pass via the chain-rule for gradient

g(�) = ∇θ[L̃(θ(�)) + LB(θ
(�)) + LU(θ

(�))]
9 Update parameters using step size η via

θ(�+1) = θ(�) − η · g(�)
10 � = �+ 1;
11 until convergence
12 [B,U] = f(X,A; θ(�+1))
13 Calculate {ωi}i∈V\L based on B and U via Eq. (14) return
{ωi}i∈V\L

edges in the input network, respectively. The total algorithmic

running time is hence (O(L(KN +KM))), where L is the

number of iterations. As shown in our experiments, L scales

constant with respect to M and accordingly our algorithm

scales linearly with respect to the total number of edges.

VI. RESULTS AND ANALYSIS

A. Experimental Settings

1) Semi-synthetic Epinions dataset: We use the Epinions
dataset [1] representing a who-trust-who in an online social

network. This is a directed network consisting of 47,676 users

(i.e., vertices) and 467,468 relationships (i.e., edges). As there

are no ground truth opinions available from the dataset, we

use a benchmark simulation model [19] to generate synthetic

opinions. The simulation model has the following main steps:

1) Initialization: 10% of the edges are randomly selected

and set the trust of the edges to 1’s meaning that i trusts

j (but not necessarily j trusts i) where i and j are users

in the given directed network.

2) Exploration: 1,000 exploration steps are performed to

update trust relationships based on the following trust

rule:

Trust(a, b) = 1 ∧ Trust(b, c) = 1→ Trust(a, c) = 1. (24)

The exploration step is used to generate synthetic trust

observations on the edges of the network. For each ex-

ploration step, we randomly select one edge, identify the

rule instances associated with this edge, and generate one

observation of the edge (0 or 1) based on the probability

of the rule instances, where 1 refers to trust while 0 refers

to distrust. By repeating the exploration step 1,000 times,

we generate a realization of trust relationships on the

edges in the network, in which the observations of 1000

randomly selected edges were generated, and the other
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edges do not have any observations in this realization.

We then conduct the 2nd realization based on the previous

one by randomly selecting 5% of the edges and swapping

their most recent observations from 1 to 0 or from 0 to 1
that are considered as their new trust observations at the

current realization. 1,000 exploration steps are conducted

to generate observations to make them consistent with

the trust rule. Following this procedure, we generate 2nd,

· · · , and T -th realizations.

3) Performance evaluation: After conducting the T real-

izations, each edge then has up to T trust observations

and its opinion can be estimated based on its trust

observations. We consider a set of candidate values of

T ∈ {3, 6, 8, 11, 38} corresponding to different uncer-

tainty ranges that will be explained below. In order to

conduct performance evaluation for different network

sizes, we randomly sample sub-networks with the number

of nodes N ∈ {500, 1000, 5000, 10000} from the original

Epinions network, respectively. The testing edges are ran-

domly selected from all the edges with the percentages (or

test ratios) ∈ {20%, 40%, 60%, 80%} and are predicted

based on the observations and known opinions of the

other edges which are training edges.

2) Road traffic datasets: We collected live road traffic

data from June 1, 2013 to March 31, 2014 across two cities

from INRIX [2], Washington D.C. and Philadelphia (PA), as

summarized in Table I. The raw INRIX dataset collected live

traffic speed information from trucks per five-minute interval.

A road link has a live speed measurement at a specific time

interval if it has at least one truck traversing this link at the

time interval; otherwise, it will be a missing speed value. In

addition, the reference speed information for each road link per

hour interval. A reference speed is defined as the “uncongested

free flow speed” for each road segment [3]. It is calculated

based upon the 85-th percentile of the measured speed for

all time periods over a few years, where the reference speed

serves as a threshold separating two traffic states, congested vs.

uncongested. The road traffic dataset for each of the two cities

has 43 weeks in total. An hour is represented by a specific

combination of hours of a day (h ∈ {6, 9, 12, ..., 21}), days

of a week (d ∈ {1, 2, 3, 4, 5}), and weeks (w ∈ {1, 2, ..., 43}):
(h, d, w). We only considered work days from Monday (d = 1)

to Friday (d = 5) and hours from 6AM (h = 6) to 9PM

(h = 21).

TABLE I
Description of the three real-world datasets

Dataset name # nodes # edges # weeks # snapshots (hours) in total
Epinions 47,676 477,468 - -

Washington, D.C. 1,383 1,878 43 3440
Philadelphia 603 708 43 3440

Preprocessing of the networks: The congestion labels in

these datasets refer to edges (i.e., road links), but not nodes

(intersections). As our proposed approach is for node-level

opinion inference, we converted the DC and PA road networks

to new networks, in which each node represents a road link

and each edge indicates its end nodes (i.e., road links) are

adjacent in their original road network. We note that the same

preprocessing is also conducted for the Epinions dataset.

Groundtruth opinions (beliefs and uncertainties) of
training and testing edges in each dataset. For each

road traffic dataset, the opinion of a specific (training or

testing) link s at an hour (h, d, w) is estimated based on

the observations of the same hour in previous T weeks

{xs,h,d,w, xs,h,d,w−1, ..., xs,h,d,w−T+1} as the evidence, where

xs,h,d,w refers to the congestion observation (0 or 1) of the link

s at hour (h, d, w) and T refers to a predefined time window

size. Some of the observations were unobserved, as only a
subset of the links were traversed by the delivery trucks.
Denote by Ts the number of observations within the T weeks

for the link s and 0 ≤ Ts ≤ T . The belief, disbelief, and

uncertainty mass variables bs, ds, and us of a specific link s
are estimated by:

bs =

(∑T−1

t=0
xs,h,d,w−t −W · a

)
/(Ts +W )

ds =

(
T −

∑T−1

t=0
xs,h,d,w−t +W · a

)
/(Ts +W )

us = W/(Ts +W ), (25)

where we set the non-informative prior weight (i.e., an amount

of uncertain evidence with W = 2) and the base rate (i.e., prior

knowledge with a = 0.5). As T is the maximum number of

possible observations a link can have within a time window

of size T , it can be used to calculate a lower bound on the

uncertainty of a link as W/(T+W ), and the upper bound will

be 100%. For example, for T = 38, the range of uncertainties

of the links is [5%, 100%].

(a) Uncertainly value of PA Dataset (b) Uncertainly value of DC Dataset

Fig. 3. Uncertainly value distribution

Fig. 3 shows the distributions of means and standard de-

viations of uncertainties of all the road links in the DC and

PA datasets for all the time windows of size 38, respectively.

It indicates that the uncertainties of road links in PA are

skewed towards small values (i.e., 5%) while the distribution

of uncertainties in the DC dataset is more towards uniform.

This allows us to more rigorously validate the performances

of uncertain opinion prediction methods under two different

distributions of opinions.

3) Parameter settings: The main parameters for all the

datasets include T (time window size) and TR (test ra-

tio or the percentage of edges that are tested). We tested

different window sizes T ∈ {3, 6, 8, 11, 38} corresponding

to the the uncertainty ranges [25%, 100%], [20%, 100%],
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Fig. 4. Belief-MSE and Uncertainty-MSE under the semi-synthetic network based on Epinions dataset.

[15%, 100%], and [5%, 100%], respectively. Due to space

restriction, we only showed the results for T = 38 and the

uncertainty region [15%, 100%]. For other time window sizes,

we also observed similar trends. The values of TR are set to

{20%, 40%, 60%, 80%}.
4) Performance metrics: Based on Eq. (25), the uncertainty

mass, us, for each training or testing edge is a known and

constant value, u, after the window size T is predefined,

without the actual observations of this link. For this reason, the

empirical analysis based on the road traffic datasets focuses

on the comparison between the proposed methods and compa-

rable methods based on the three main metrics: Belief Mean
Squared Error (B-MSE), Uncertainty Mean Squared Error (U-

MSE), and computation time (in sec.).
The metrics B-MSE and U-MSE are defined as:

B-MSE(ωV\L) =
1

N

∑
i∈V\L |bi − b

�
i | (26)

U-MSE(ωV\L) =
1

N

∑
i∈V\L |ui − u

�
i | (27)

where ωi = (bi, di, ui, a) and ω�
j = (b�i , d

�
i , u

�
i , a) refer to the

predicted and true opinions of a target variable yi associated

with node i, respectively.
5) Comparison methods: We notate our proposed GCN-

based opinion model as GCN-opinion and our proposed opin-

ion model based on the combination of the GCN and the AVE

opinion models as GCN-AVE-opinion. We compared our pro-

posed methods with the comparable two counterpart methods:

SL [14], CSL [6], and GCN-semi for semi-supervised node

classification [15]. Note that the competitive method CSL is

not directly comparable to our proposed methods because CSL

was designed for the scenario where all the node-level opinions

in a network have the same uncertainties but different beliefs

or disbeliefs. However, in this work, we consider varying un-

certainties across nodes. We employed the following procedure

to predict the missing values for the training edges, such that

CSL can be used: For each road link i, we first estimated its

opinion based on its available observations within the current

time window of size T , and then use its equivalent Beta PDF

to sample binary observations for its missing observations

within the time window. After this procedure, each training

edge has the number of observation (T ) and hence the same

uncertainty values. For the competitive method GCN-Semi,
it was designed for semi-supervised node classification, but

not directly for opinion inference. We made the following

modifications to adapt GCN-Semi for opinion inference: For

each time interval within a time window, we applied GCN-

Semi to predict the congestion labels of the testing edges and

the missing labels of the training edges simultaneously. Then,

for each testing edge, we obtained its T observations within the

time window of size T . In addition, we used these observations

to directly estimate its opinion. Following this strategy, as all

the testing links have the same number of observations (T ),

their predicted uncertainties will be identical. Note that it is

not trivial to adapt GCN-Semi to predict varying node-level

uncertainties.

6) Parameter Tuning: SL only has one hyperparameter that

is the maximum length of its independent paths. We set this

to 18 as we observed that the results of SL are almost the

same for the maximum lengths equal to or greater than 18.

CSL does not have hyperparameters for tuning. Our proposed

methods, GCN-opinion and GCN-AVE-opinion, have three

hyper parameters: λ (the trade-off parameter), η (the learning

rate), K (the mini-bach size), and P (the dimensionality of the

latent encoded vectors), and dropout (a parameter in GCN).

We set λ = 0.01, η = 0.001, K = P = 16, and dropout

= 0.1 for all the experiments. All these hyperparameters are

estimated based on the observations of the training edges.

B. Experimental Results based on Semi-Synthetic Datasets

Fig. 4 shows the comparative analysis of our proposed

GCN-opinion and GCN-AVE-opinion and the three counter-

part methods in terms of Belief-MSE and Uncertainty-MSE

under the semi-synthetic Epinions dataset. Fig. 4 (a) and

(e) demonstrates that GCN-opinion and GCN-AVE-opinion
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(a) Belief MSE, PA Dataset (b) Uncertainly MSE, PA Dataset (c) Belief MSE, DC Dataset (d) Uncertainly MSE, DC Dataset

Fig. 5. Comparison of our proposed methods (GCN-opinion and GCN-AVE-opinion) and counterpart methods: Belief and Uncertainty MSEs vs. Test Ratios

outperform all these other methods based on Belief-MSE and

Uncertainty-MSE with respect to varying the ranges of uncer-

tainties, including [25%, 100%], [20%, 100%], [15%, 100%],
and [5%, 100%]. As the lower bound of a uncertainty range

decreases, both Belief-MSE and Uncertainty-MSE of GCN-

opinion and GCN-AVE-opinion decrease. This implies that

GCN-opinion and GCN-AVE-opinion performs even better

under larger ranges of uncertainties. We note that the trend

pattern of CSL is different from the others in that when the

lower bound of the uncertainty range decreases, its Belief MSE

increases. This can be explained that, as the original CSL

does not support missing values in training links, we fill in

the missing values with random numbers as discussed above.

A large uncertainty range (e.g., [5%, 100%]) refers to a large

window size (e.g., 38) that will lead to more random numbers,

which may potentially cause a high Belief MSE of CSL.

Fig. 4 (b) and (f) shows the effect of a network size

on Belief-MSE and Uncerainty-MSE under all comparing

schemes. It is clear that GCN-opinion and GCN-AVE-opinion

outperform their counterparts on both the metrics. There is an

interesting pattern that when a graph size increases, Belief-

MSE decreases for GCN-opinion and GCN-AVE-opinion,

where Uncertainty-MSE increases for these two methods.

It implies that the task of uncertainty prediction may be

more challenging for larger network data. Fig. 4 (c) and (g)

demonstrates the effect of test ratio on both MSE metrics of

all compared schemes. Obviously, GCN-opinion and GCN-

AVE-opinion outperform among all in both the MSE metrics,

except that they perform comparable to CSL for some of

the settings (TR = 20%, 60%, 80%) for Uncertainty-MSE.

Different from the above effect of the uncertainty range and

graph size, both the Belief-MSE and Uncertainty-MSE do not

show clear sensitivity under different test ratios.

Fig. 6. Comparison of computation time on Epinion dataset.

Fig. 6 shows the log computation times as the number of

nodes increases. Except SL whose computation time increases

exponentially when the network size increases, the other

methods almost scale linearly with respect to the network size.

GCN-opinion and CSL are the most efficient methods among

all the methods. More discussions about the computation times

of these methods are presented in the below section for the

real-world datasets, in which we summarized the observations

for both the semi-synthetic and real-world datasets on the

computation time.

Fig. 7. Comparison of computation time on real traffic dataset.

C. Experimental Results based on Real-World Datasets

Fig. 5 compares the performances of our proposed GCN-

based methods (GCN-opinion and GCN-AVE-opinion) with

those of the three counterpart methods (i.e., CSL, SL, and

GCN-Semi) with respect to Belief-MSE and Uncertainty-MSE

based on two road traffic datasets (PA and DC). The results

indicate that GCN-AVE-opinion performs the best among

all in both prediction of beliefs and uncertainties. GCN-

opinion performs the second best, but it is less sensitive

than GCN-AVE-opinion across different test ratios and shows

that both Belief-MSE and uncertainty-MSE in GCN-opinion

significantly increase as test ratio increases. When the test

ratio is low (i.e., 20%), both Belief-MSE and Uncertainty-

MSE in these two methods are comparable under certain

settings while GCN-AVE-opinion outperforms GCN-opinion

and other methods when the test ratios exceeds 20%. Although

the uncertainty-MSEs in CSL and GCN-Semi are comparable

to that in GCN-AVE-opinion for the PA dataset as shown in

Fig. 5 (b), their uncertainty-MSEs are more than 80% higher

than that of GCN-AVE-opinion for the DC dataset as shown

in Fig. 5 (d).

Fig. 7 shows the average snapshot-level log computation

times across different test ratios (i.e., 20%, 40%, and 60%)

on the two road traffic datasets obtained for PA and DC.

When the network size increases, the running complexity of

SL increases in an exponential order while those of the other

methods (including GCN-opinion and GCN-AVE-opinion)

increase in a linear order. In particular, GCN-opinion and
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CSL show the lowest computation time. GCN-AVE-opinion

shows lower computation time than CGN-Semi and SL, but

higher computation time than GCN-opinion and CSL due the

complexity of combining the GCN-based model with AVE-

based model. However, GCN-AVE-opinion still scales almost

linearly in proportion to network size. GCN-Semi has the

highest computation time, because the model needs to run on

the snapshot of the network for each time slot while the other

methods only run once for each time window and the total

number of time slots is 38 times the total number of time

windows, where 38 is the fixed size of the time windows.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a novel DL-based opinion infer-

ence approach based on GCN and AVE techniques to address

the key challenges of scalability and handling heterogeneous

opinions in network data. From the simulation experiments

conducted in this work, our key findings are:

• Overall our proposed GCN-AVE-opinion method out-

performs all other counterparts in both Belief-MSE and

Uncertainty-MSE. In particular, our GCN-AVE-opinion

method shows less sensitivity over a wide range of

test ratios, implying high resilience, compared to GCN-

opinion, SL, CSL, and GCN-Semi.

• The performance order in Belief-MSE follows: GCN-

AVE-opinion > GCN-opinion > GCN-Semi > SL >
CSL. The performance order in Uncertainty-MSE fol-

lows: GCN-AVE-opinion > GCN-opinion > GCN-Semi

≈ CSL > SL.

• The higher performance of GCN-based methods is be-

cause they are capable of modeling heterogeneous struc-

tural dependencies among node-level beliefs and uncer-

tainties.

• The higher performance of GCN-AVE-opinion over

GCN-AVE is because GCN-AVE-opinion integrates an

AVE-based opinion model to model the inherent rela-

tional dependencies between beliefs and uncertainties

based on mapping of their combinations (opinions) to

their equivalent PDFs.

• AVE-GCN-opinion scales almost linearly in proportion to

the network size and is scalable for large-scale network

data.

In our future work, we plan to conduct: (1) the validation

the performance of our DL-based approach based on more

real-world datasets (e.g., cybersecurity datasets); and (2) the

extension of our proposed work to address uncertainty-based

online opinion inference problems.

ACKNOWLEDGMENTS

This work is partially supported by ARL’s Competitive

Basic Research Program under Computational and Information

Sciences Directorate and by the US Army Research Office

under grant number W911NF1720129. The views and conclu-

sions contained in this document are those of the authors and

should not be interpreted as representing the official policies,

either expressed or implied, of ARL or the U.S. Government.

The U.S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copy-

right notation here on.

REFERENCES

[1] “Epinions,” http://www.trustlet.org/downloaded epinions.html.
[2] “Inrix,” http://inrix.com/publicsector.asp.
[3] “Reference speed for congestion evaluation,” http://www.inrix.

com/scorecard/methodology.asp/.
[4] S. H. Bach, M. Broecheler, B. Huang, and L. Getoor, “Hinge-

loss markov random fields and probabilistic soft logic,” arXiv
preprint arXiv:1505.04406, 2015.

[5] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral
networks and locally connected networks on graphs,” arXiv
preprint arXiv:1312.6203, 2013.

[6] F. Chen, C. Wang, and J.-H. Cho, “Collective subjective logic:
Scalable uncertainty-based opinion inference,” in IEEE Big-
Data, 2017, pp. 7–16.

[7] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolu-
tional neural networks on graphs with fast localized spectral
filtering,” in NIPS, 2016, pp. 3844–3852.

[8] P. Frasconi, M. Gori, and A. Sperduti, “A general framework
for adaptive processing of data structures,” ITNN, vol. 9, no. 5,
pp. 768–786, 1998.

[9] M. Gori, G. Monfardini, and F. Scarselli, “A new model for
learning in graph domains,” in IJCNN’05, pp. 729–734.

[10] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representa-
tion learning on large graphs,” in NIPS, 2017, pp. 1025–1035.

[11] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets
on graphs via spectral graph theory,” ACHA, vol. 30, no. 2, pp.
129–150, 2011.

[12] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolu-
tional networks on graph-structured data,” arXiv preprint
arXiv:1506.05163, 2015.

[13] M. Ivanovska, A. Jøsang, L. Kaplan, and F. Sambo, “Subjective
networks: Perspectives and challenges,” in GSKPR. Springer,
2015, pp. 107–124.

[14] A. Jøsang, Subjective Logic: A Formalism for Reasoning Under
Uncertainty. Springer, 2016.

[15] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” CoRR, abs/1609.02907,
2016.

[16] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and
M. M. Bronstein, “Geometric deep learning on graphs and
manifolds using mixture model cnns,” in Proc. CVPR, vol. 1,
no. 2, 2017, p. 3.

[17] E. Nalisnick and P. Smyth, “Stick-breaking variational autoen-
coders,” in ICLR, 2017.

[18] C. E. Rasmussen, “Gaussian processes in machine learning,” in
ALMR. Springer, 2004, pp. 63–71.

[19] M. Richardson, R. Agrawal, and P. Domingos, “Trust man-
agement for the semantic web,” in International semantic Web
conference. Springer, 2003, pp. 351–368.

[20] G. Shafer et al., A mathematical theory of evidence. Princeton
university press Princeton, 1976, vol. 1.

[21] R. Singh, J. Ling, and F. Doshi-Velez, “Structured variational
autoencoders for the beta-bernoulli process,” Technical report,
2017.
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